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The free fall of a liquid-metal drop, heat transfer from the drop to its environment, and 
solidification of the drop are described for both gaseous and vacuum atmospheres. A simple 
model, in which the drop is assumed to fall rectilinearly, with behaviour like that of a rigid 
particle, is developed to describe cooling behaviour. Recalescence of supercooled drops is 
assumed to occur instantaneously when a specified temperature is passed. The effects of 
solidification and experimental parameters on drop cooling are calculated and discussed. 
Major results include temperature as a function of time, and of drag, time to complete 
solidification, and drag as a function of'the fraction of the drop solidified. 

1. Introduction 
The usefulness of drop tubes for studies of contain- 
erless liquid-metal supercooling is well established 
[1-4]. The typical experiment involves a small (several 
millimetres in diameter) drop falling from a levitated 
position within an evacuated or helium-filled drop 
tube chamber. The atmosphere provides added heat 
transfer capabilities, but also results in a drag force on 
the drop that can affect its motion. 

Modelling studies of liquid-drop kinematics during 
the several second fall period, as well as of related 
processes, such as internal circulation and heat trans- 
fer, must be carried out to both guide and interpret 
corresponding experimental studies, Accordingly, 
several such studies have been reported [1, 2, 5]. 

The work presented here consists of another model- 
ling study, the distinguishing features of which include 
more general treatments of such factors as the drag 
force and convective heat transfer as well as treatment 
of supercooling and solidification. Application of the 
model is made to a number of pure metal systems, 
which leads to considerable insight into expected 
drop behaviour and hence to suggested experimental 
studies. 

2. Differential  equations for a 
falling drop 

In this section, we briefly develop the differential 
equations for~a falling drop. A more detailed discus- 
sion, including justification for the various approx- 
imations, has been published previously [6]. 

The differential equations of motion for the drop 
a r c  

dx/dt  = U (1) 

dU/d t  = gAp/pp - 3CapU2/49pd (2) 
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where g is the gravitational field strength, p is the 
density of the gas, Pp is the density of the drop, 
Ap = Op - P, Ca is the coefficient of drag, d is the drop 
diameter, U is the drop speed, x is the distance fallen, 
and t is time. The drag coefficient, C a, depends on the 
Reynolds number (Re); we used the steady state drag 
correlations for spheres recommended by Clift, Grace 
and Weber [7], which are applicable at low Mach and 
Knudsen numbers. 

The differential equation for heat transfer is 

dTp/dt = [ - s s ( T  4 -  T 4) - h(Tp - T)](6/Cpppd) 

(3) 

where Tp is the drop temperature, ~ is the emittance, s 
is the Stefan-Boltzmann constant, h is the heat trans- 
fer coefficient, and Cp is the heat capacity of the metal. 
In using Equation 3, it is assumed that there are no 
temperature gradients within the drop, that no phase 
changes occur, and that the temperature of the gas far 
from the drop and the mean radiative temperature of 
the environment are both T. 

In our calculations, Equations 1-3 were solved 
numerically by a non-adaptive fourth order Runge- 
Kutta method [8]. Although this is a simple method, 
it provides sufficient accuracy. For the calculations 
reported here, we found that the global error due to 
the numerical integration is less than 0.06 K for tem- 
perature and less than 1.2 mm for position. 
The results reported were obtained with the White 
model of heat transfer [9] 

h = (Kt/d)(2 + 0.3Prl/3Re ~ (Re < 100000) 

(4) 

where Pr is the Prandtl number of the gas, K t is the 
thermal conductivity of the gas, and d is the drop 
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diameter. In this model, gas properties are evaluated 
at the film temperature Tf, 

Tf = ( T + Tp)12 (5) 

3. Thermophysical properties 
Thermophysical properties of the drops were collected 
from a variety of sources. Emittances for some mater- 
ials were unavailable and were estimated from the 
values for similar materials. Values for drop properties 
are given in Table I. Variation of properties with 
temperature was neglected. 

For calculations of drop fall in a helium atmo- 
sphere, thermophysical properties of the gas must also 
be known. Relevant properties include density, vis- 
cosity, thermal conductivity, and heat capacity. 

For all calculations, we have assumed that the 
density of helium is given by the ideal gas law. This 
assumption is expected to be least accurate at the 
lowest temperature (293K) and highest pressure 
(26 kPa) used in the calculations. Even under these 
conditions, the use of a van der Waals equation of 
state gives rise to a correction to the density of less 
than 0.025% [10]. The viscosity of helium was taken 
to be 

= I3.51068• 10 -7 - -  1.67969 • 10 -11 ~t 
L 

\ I K J  Pas  (6) 

where ~t is the viscosity and T is the temperature. 
Division of temperature by 1 K is simply to remove 
units. Equation 6 was found to fit recommended val- 
ues ofviscosity [11] to within 0.36% over the temper- 
ature range 260-2500 K. 

Data on the thermal conductivity of He from 
260-2500 K were obtained from a handbook [12]. 
No single simple function was found that adequately 
described the data over this entire temperature range, 
so a cubic spline was fitted through the recommended 
values. The heat capacity of He at constant pressure 
was taken to be 2.5R, where R is the gas constant, in 
accord with the kinetic theory of gases. 

4. Results and discussion 
A primary motivation for using a drop tube is that it 
provides an inexpensive way to replicate the contain- 
erless, low gravity processing that is available in space. 
It should be recognized, however, that although drop 

tubes do provide containerless processing, only ex- 
periments in n. vacuum provide microgravity (in the 
reference frame of the falling drop) for an appreciable 
period of time. In Fig. 1, we plot (9 - dU/dt)/9, which 
is the retarding effect of the environment, as a function 
of time for two metals. The retarding effect is the sum 
of drag plus buoyancy. For a drop in a perfect 
vacuum, p = 0 and ( 0 -  dU/dt)/9 = 0, while for a 
drop falling in an atmosphere at its (constant) terminal 
velocity, ( 9 -  dU/dt)/9 = 1. (For the remainder of 
this paper, "drag plus buoyancy" will be referred to as 
"drag", since buoyancy is generally much smaller than 
drag.) In these calculations, each of the drops was 
taken to be at its melting point at the beginning of the 
fall. The gas temperature, T, was 293 K. Zero time 
corresponds to release of the drop from rest; the ends 
of the curves indicate the time of impact of the drop 
after falling 100 m. Various drop diameters and gas 
pressures were used. The lowest pressures (4 kPa for 
3 mm and 8 kPa for 1 mm drops) are roughly those at 
which the effects of slip flow become significant, ac- 
cording to the classification scheme of Schaaf and 
Chambr6 [13]. With the exception of vacuum, the 
range of gas pressures considered has a substantial but 
not strong effect on acceleration of the drop. The effect 
of changing drop size from 3 to 1 mm at a fixed 
pressure is much stronger. It should also be observed 
that drag has a significant effect even at fairly short 
times for all non-zero gas pressures. Within 1 s, drag 
reduces the acceleration by more than 0.019 even in 
the case of the densest metal (Ni), largest drop (3 mm), 
and lowest gas pressure (4 kPa). Thus, while the drop 
is cooled in a containerless manner throughout its fall, 
the period that can be considered "low gravity" is 
fairly short if a gas coolant is used. 

The period of time during which the drop experi- 
ences microgravity ((9 - dU/dt)/9 < 10 - 6 )  is 
extremely short. In Fig. 2, we show drag on a logar- 
ithmic scale; the value at zero time is due to buoyancy 
alone. The longest periods of microgravity are achiev- 
ed with the denser metals at 4 kPa pressure of He and 
drop diameters of 3 mm, but, even for these cases, 
microgravity only lasts for about 60 Its. This is negli- 
gibly short, not even long enough for the drop to fall 
20 nm. Note also that an  experiment conducted in a 
drop tower in air at atmospheric pressure would fail to 
achieve microgravity by at least two orders of magni- 
tude because of buoyancy alone. 

In Fig. 3, we show temperature as a function of time. 
From this figure, we see that although drops cooled in 
a vacuum experience low gravity throughout the fall, 

TAB LE I Thermophysical properties of drop materials 

Material A1 Cu Fe Ni 

Melting point (K) 933.52 1356.55 1808 
Surface tension (N m -  1 ) 0.914 1.360 1.872 
Density (kgm 3) 2380 7990 7010 
Emittance 0.15 0.15 0.29 
Heat capacity (liquid) (J kg-  1 K - ~ ) 1085.5 493.8 749.2 
Heat capacity (solid) (J kg t K -  1) 1242.6 489.5 735.5 
Enthalpy of fusion (J kg-  1): 398527 204772 289197 
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Figure 1 Drag ( g  - dU/dt)/g, as a function of time for supercooled liquid drops of specified diameter, falling in He at specified pressure (a)A1 
and (b) Cu. Plots for Fe and Ni are similar to those for Cu. Ends of curves correspond to impact of drops at the bottom of a 100 m drop tube. 
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Figure 2 Drag (9 - d U/dt)/9, as a function of time for supercooled liquid drops of specified diameter, falling in He at specified pressure (a) A1 
and (b) Cu. Dashed line shows effect of buoyancy alone for air at 101 kPa. Plots for Fe and Ni are similar to those for Cu. 
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Figure 3 Temperature as a function of time for supercooled liquid drops of specified diameter falling in He at specified pressure (a) A1 and (b) 
Cu. Plots for Fe and Ni are similar to those for Cu. 

low gravi ty  is ob t a ined  at  the cost  of  a reduced  cool ing  
rate. Because of  the s t rong  dependence  of  r ad ia t ion  on 
tempera ture ,  the cool ing ra te  in vacuum is smallest  for 
A1, which has the lowest  mel t ing point ,  and  largest  for 
Fe, which has the highest  mel t ing point .  

The da t a  in Figs 1-3 canno t  be used direct ly  to 
c ompa re  the effectiveness of var ious  combina t ions  of  
d rop  size and  gas 15ressure in cool ing the d rop  with 
min imal  drag,  o r  in answer ing  quest ions  such as 
"which d rop  size and pressure  (if any) will cool  the 
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drop by 200 K while keeping the acceleration from 
drag less than 0.1 g?" Such problems can be addressed 
with plots like Fig. 4. Here we plot drag as a function 
of temperature. In these plots, the lowest curves cor- 
respond to those combinations of diameter and pres- 
sure that provide maximum cooling with minimum 
drag acceleration. Cooling a drop in vacuum elimi- 
nates drag, but the total amount of cooling is limited. At 
long times, low gas pressures are generally more effect- 
ive than higher gas pressures for the same drop dia- 
meter. Surprisingly, however, the curves for non-zero 
gas pressure d ~ not depend very strongly on either gas 
pressure o r droop diameter. In se~,eral Cases, the curves 
for 1 and 3 mm drops at the same gas pressure cross, 
although this is difficult to see in Fig. 4. 

In the calculations above, it has been assumed that 
the drop remains liquid throughout its fall, regardless 
of the amount of supercooling. This has been the 
standard treatment in drop calculations. We have 
generalized our calculation to consider drops that 
partially or completely solidify in flight. 

Solidification is handled by the following approach. 
The drop is assumed to cool in the liquid state until its 
temperature reaches a specified nucleation temper- 
ature. At this temperature, the drop instantaneously 
recalesces to the melting point, or, if the drop is 
hypercooled, it recalesces until solidification is 
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complete. In the case of non-hypercooled drops, the 
temperature remains at the melting point Until solidi- 
fication is complete. This treatment involves two 
approximations: first, the assumption of instantan- 
eousness requires that the solid-liquid interface move 
through the drop very rapidly, and, second, the use of 
a single drop temperature requires the assump- 
tion that the drop remains isothermal during re- 
calescence. 

Each of these approximations results in some in- 
accuracy, so we need to estimate the magnitude of the 
errors incurred. Let us first consider the assumption of 
an isothermal drop. Large thermal gradients will re- 
sult as the solidification front moves through the drop. 
These will be removed by ttiermal diffusion. The 
characteristic time for removal of thermal gradients is 
given approximately by the equation 2(Dt)1/2= d 
where D is the thermal diffusivity and t is the charac- 
teristic time. For 3 mm drops, the characteristic times 
vary from about 20 ms for Cu to about 110 ms for Fe. 
For 1 mm drops, the characteristic times will vary 
from about 2 to 12 ms. The model will therefore be 
inaccurate for approximately this length of time after 
recalescence begins. In Fig. 4, this would be reflected 
as a rounding of the sharp discontinuities that have 
been plotted. Because the time for thermal diffusion is 
short, the model is considered to be adequate for our 
present purposes. 

In comparison, the assumption that the solid-liquid 
interface moves rapidly is relatively unimportant. For 
3 mm drops, an interface speed of 0.15 m s- ~ would 
suffice to cross a drop in the 20 ms required to pro- 
duce thermal equilibrium in a Cu drop. Since the 
expected interface speeds for strongly supercooled 
drops are comparable to or higher than this [14], we 
conclude that the limitations on the model resulting 
from interface motion are comparable to or smaller 
than those imposed by thermal diffusion, at least for 

Figure 4 Drag ( g -  dU/dt)/9, as a function of temperature for 
supercooled liquid drops of specified diameter falling in He at 
specified pressure (a) A1, (b) Cu, (c) Fe. Plot for Ni is similar to that 
for Fe. 
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3 mm drops. Since the time to remove thermal gra- 
dients varies as the square of drop radius, while the 
time for the interface to cross the drop varies linearly 
with radius, interface motion becomes more import - 
ant, relative to thermal diffusion, as drop size de- 
creases. However, the time for removal of thermal 
gradients and the time for the interface to cross the 
drop are both shorter for smaller drops. 

In Fig. 5, we show temperature as a function of time 
for 3 mm metal drops cooling in free fall. The atmo- 
sphere is He at 8 kPa pressure. All drops were started 
at their respective melting points, and nucleation tem- 
peratures of 0-400 K below the melting point were 
taken. In the case of aluminium with nucleation at 
400 K below the melting point, the drop remains 
liquid until impact at the bottom of a 100 m drop 
tube; all other drops are completely solid on impact. 
For  the conditions chosen here, hypercooling occurs 
only for Fe with 400 K supercooling. 

The drops that begin to solidify at small super- 
coolings are completely solidified before those that 
begin to solidify only with larger supercoolings. This is 
expected, since a supercooled liquid drop has a lower 
temperature than a drop at the melting point, and 
therefore the supercooled drop loses heat tess rapidly. 

In Fig. 6, we plot drag as a function of the fraction of 
the drop that has solidified. Like Fig. 4, this can be 
used to determine the gravitational field felt by the 
drop dur ing solidification. All curves start essentially 
at the origin. Curves for non-zero supercooling follow 
the y-axis as the liquid cools and drag builds up 
because of increasing speed. At the time of'nucleation, 
part of the drop solidifies, and the flattish portion of 
the curve is crossed abruptly. The drag reaches at least 
0 .3ms  -2 for all drops before solidification is com- 
plete, and it can be as large as 2 m s-  2 for A1 drops. 

5. C o n c l u s i o n s  
A simple model for the cooling and solidification of a 
falling drop has been developed. The differential equa- 
tions of motion and heat transfer have been solved for 
four elements under various conditions of gas pressure 
and drop diameter. Comparisons have been made of 
the effectiveness of these combinations of pressure 
and diameter in cooling the drop with minimal drag 
acceleration. 

Recalescence of solidifying drops is modelled by 
assuming that the drop reealesces instantaneously. 
This model is used to determine the time necessary 
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Figure 5 Temperature as a function of time for 3 mm drops falling in He at 8 kPa (a) A1, (b) Cu, (c) Fe and (d) Ni. Solid line corresponds to 
solidification beginning at 0 K supercooling, short dashed line to 100 K supercooling, dotted line to 200 K supercooling, dot-dashed line to 
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Fig~re 6 Drag (g - dU/dt)/g, as a function of fraction solidified for 3 mm drops falling in He at 8 kPa (a) A1, (b) Cu, (c) Fe and (d) Ni. 
Solidification begins at specified supercooling. 

for complete solidification and the drag acceleration 
experienced by the drop during solidification. 
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